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Abstract. The masses, pseudoscalar and vector weak decay constants and electromagnetic form factors of
light S-wave mesons are studied in the framework of the relativistic quark model based on the quasipotential
approach. We use the same model assumptions and parameters as in our previous investigations of heavy
meson and baryon properties. The masses and wave functions of the ground state and radially excited π,
ρ, K, K∗ and φ mesons, obtained by solving numerically the relativistic Schrödinger-like equation with the
complete relativistic qq̄ potential including both spin-independent and spin-dependent terms, are presented.
Novel relativistic expressions for the weak decay constants of the pseudoscalar and vector mesons are de-
rived. It is shown that the intermediate negative-energy quark states give significant contributions which
essentially decrease the decay constants bringing them in agreement with experimental data. The electro-
magnetic form factors of the pion, charged and neutral kaon are calculated in a broad range of the space-like
momentum transfer. The corresponding charge radii are determined. All results agree well with the available
experimental data.

PACS. 14.40.Aq; 13.40.Gp; 12.39.Ki

1 Introduction

The theoretical investigation of the properties of light
mesons such as π, ρ, K, K∗ and φ is a longstanding prob-
lem which plays an important role in understanding the
low-energy QCD. The description of these mesons within
the constituent quarkmodel presents additional difficulties
compared to heavy–light mesons and heavy quarkonia. In
fact, due to the highly relativistic dynamics of light quarks,
the v/c and 1/mq expansions are completely inapplicable
in the case of light mesons and the QCD coupling con-
stant αs at the related scale µ is rather large. Moreover, the
behavior of αs(µ

2) in the infrared region is unknown and
thus model dependent (exhibiting, e.g., freezing behavior,
etc.). The pseudoscalar mesons π and K produce a spe-
cial problem, since their small masses originate from their
Goldstone nature caused by the broken chiral symmetry.
Therefore the reliable description of light mesons requires
the completely relativistic approach. It is well known that
in the relativistic studies an important role is played by
the Lorentz properties of the confining quark–antiquark in-
teraction. The comparison of theoretical predictions with
experimental data can provide valuable information on the
form of the confining potential. Such information is of great
practical interest, because at present it is not possible to

a e-mail: galkin@physik.hu-berlin.de

obtain the relativistic qq̄ potential in the whole range of
distances from the basic principles of QCD.1 Most of the
main characteristics of light mesons are formed in the in-
frared (nonperturbative) region, thus providing important
insight in the low-energy properties of qq̄ interaction. Thus
investigation of both static (e.g., masses and decay con-
stants) and dynamic (e.g., electroweak decay form factors)
properties is of significance.
Many different theoretical approaches have been used

for studying light mesons, which are based on the rela-
tivized quark model [2], the Dyson–Schwinger and Bethe–
Salpeter equations [3, 4], chiral quark models with sponta-
neous symmetry breaking (e.g. the Nambu–Jona–Lasinio
model) [5], the relativistic Hamilton dynamics [6, 7], the
finite-energy [8] and light-cone [9] sum rules and lattice
QCD [10]. Here we consider the possibility of investigating
lightmesons on the basis of the three-dimensional relativis-
tic wave equation with the QCD motivated potential. Our
relativistic quark model was originally constructed for the
investigation of hadrons with heavy quarks. It was success-
fully applied for the calculation of their masses and vari-
ous electroweak decays [11–15]. In these studies the heavy
quark expansion has been used to simplify calculations.

1 Recent calculations of the nonperturbative qq̄ potential in
continuum Yang–Mills theory in Coulomb gauge can be found
in [1].



746 D. Ebert et al.: Masses and electroweak properties of light mesons in the relativistic quark model

We determined all parameters of our model from a few ex-
perimental observables (some masses and decay rates) and
keep them fixed in all our subsequent calculations, thus
ensuring its universality. While describing the properties
of heavy–light mesons [12], we treated the light quarks in
a completely relativistic way. Recently this approach was
applied for calculating the masses of light mesons [16] and
light diquarks inside the heavy baryons [13]. Due to the
phenomenological character of our model we cannot re-
veal the origin of the chiral symmetry breaking and thus
the model cannot describe the chiral limit and the Gold-
stone nature of the pion.We consider the pion as the purely
bound state of the quark and antiquark with fixed con-
stituent masses.
In this paper we extend our previous studies of light

mesons and describe their electroweak properties such as
the weak decay constants and electromagnetic form fac-
tors. The investigation of decay constants and form factors
is an important issue since it provides a very sensitive test
of the light meson wave functions and, thus, of the quark
dynamics in a meson. It requires the completely relativis-
tic consideration of the corresponding decay processes in-
cluding account for the relativistic transformation of the
meson wave functions. The comparison with the available
large set of experimental data tests the model predictions
in a broad momentum range and helps to discriminate be-
tween different model assumptions.
The paper is organized as follows. In Sect. 2 we briefly

describe our relativistic quark model, formulate our main
assumptions and give the values of parameters. Then
in Sect. 3 we present our results for the light meson
masses [16], for selfconsistency. There the procedure of
constructing the completely relativistic local potential of
the light quark interaction in a meson is described. The
obtained potential is applied for calculating the light S-
wavemesonmasses and wave functions. In Sect. 4 the novel
relativistic expressions for the weak decay constants of
pseudoscalar and vector meson are derived. Special atten-
tion is paid to including all possible intermediate quark
states. It is argued that the negative-energy contribu-
tions play an essential role. The calculated decay constants
are compared with other predictions and experimental
data. The electromagnetic form factors of pseudoscalar
mesons are studied in Sect. 5. The relativistic expressions
for these form factors are obtained which take into ac-
count the contributions of negative-energy quark states
and relativistic transformations of the meson wave func-
tions from the rest frame to the moving one. The calculated
form factors are plotted in comparison with experimental
data. The charged radii of the pion, charged and neu-
tral kaon are also determined. Our conclusions are given
in Sect. 6.

2 Relativistic quark model

In the quasipotential approach a meson is described by the
wave function of the bound quark–antiquark state, which
satisfies the quasipotential equation of the Schrödinger

type [11]
(
b2(M)

2µR
−
p2

2µR

)
ΨM(p) =

∫
d3q

(2π)3
V (p,q;M)ΨM (q) ,

(1)

where the relativistic reduced mass is

µR =
E1E2

E1+E2
=
M4− (m21−m

2
2)
2

4M3
, (2)

and E1, E2 are given by

E1 =
M2−m22+m

2
1

2M
, E2 =

M2−m21+m
2
2

2M
. (3)

Here M =E1+E2 is the meson mass, m1,2 are the quark
masses, and p is their relative momentum. In the center-of-
mass system the relative momentum squared on mass shell
reads

b2(M) =

[
M2− (m1+m2)

2
] [
M2− (m1−m2)

2
]

4M2
. (4)

The kernel V (p, q;M) in (1) is the quasipotential opera-
tor of the quark–antiquark interaction. It is constructed
with the help of the off-mass-shell scattering amplitude,
projected onto the positive-energy states. Constructing the
quasipotential of the quark–antiquark interaction, we have
assumed that the effective interaction is the sum of the
usual one-gluon exchange term with the mixture of long-
range vector and scalar linear confining potentials, where
the vector confining potential contains the Pauli interac-
tion. The quasipotential is then defined by2

V (p,q;M) = ū1(p)ū2(−p)V(p,q;M)u1(q)u2(−q) , (5)

with

V(p,q;M)≡

V(p−q) =
4

3
αsDµν(k)γ

µ
1 γ
ν
2 +V

V
conf(k)Γ

µ
1 Γ2;µ+V

S
conf(k) ,

where αs is the QCD coupling constant, Dµν is the gluon
propagator in the Coulomb gauge,

D00(k) =−
4π

k2
,

Dij(k) =−
4π

k2

(
δij−

kikj

k2

)
,

D0i =Di0 = 0 , (6)

and k= p−q; γµ and u(p) are the Dirac matrices and
spinors

uλ(p) =

√
ε(p)+m

2ε(p)

⎛
⎝ 1

σp

ε(p)+m

⎞
⎠χλ , (7)

2 In our notation, where strong annihilation processes are
neglected, antiparticles are described by usual spinors taking
into account the proper quark charges.
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with ε(p) =
√
p2+m2. The effective long-range vector ver-

tex is given by

Γµ(k) = γµ+
iκ

2m
σµνk

ν , (8)

where κ is the Pauli interaction constant characterizing the
anomalous chromomagnetic moment of quarks. Vector and
scalar confining potentials in the nonrelativistic limit re-
duce to

V Vconf(r) = (1− ε)(Ar+B) ,

V Sconf(r) = ε(Ar+B) , (9)

reproducing

Vconf(r) = V
S
conf(r)+V

V
conf(r) =Ar+B , (10)

where ε is the mixing coefficient.
All the model parameters have the same values as in

our previous papers [11, 12]. The light constituent quark
masses mu =md = 0.33GeV ,ms = 0.5 GeV and the pa-
rameters of the linear potential A = 0.18GeV2 and B =
−0.3 GeV have the usual values of quark models. The value
of the mixing coefficient of vector and scalar confining
potentials ε = −1 has been determined from the consid-
eration of charmonium radiative decays [11]. Finally, the
universal Pauli interaction constant κ=−1 has been fixed
from the analysis of the fine splitting of heavy quarkonia
3PJ -states [11]. In the literature the ’t Hooft-like interac-
tion between quarks induced by instantons is widely dis-
cussed [17]. This interaction can be partly described by in-
troducing the quark anomalous chromomagnetic moment
having an approximate value κ=−0.744 (as found by Di-
akonov in [17]). This value is of the same sign and order
of magnitude as the Pauli constant κ=−1 in our model.
Thus the Pauli term incorporates at least part of the in-
stanton contribution to the qq̄ interaction.3

3 Light meson masses

The quasipotential (5) can be used for arbitrary quark
masses. The substitution of the Dirac spinors (7) into (5)
results in an extremely nonlocal potential in the config-
uration space. Clearly, it is very hard to deal with such
potentials without any additional transformations. In oder
to simplify the relativistic qq̄ potential, we make the follow-
ing replacement in the Dirac spinors:

ε1,2(p) =
√
m21,2+p

2→ E1,2 (11)

(see the discussion of this point in [12, 16]). This substi-
tution makes the Fourier transformation of the potential

3 As is well known, the instanton-induced ’t Hooft interaction
term breaks the axial UA(1)-symmetry, the violation of which
is needed for describing the η–η′ mass splitting. We do not con-
sider this issue here.

(5) local. We also limit our consideration only to the S-
wave states, which further simplifies our analysis, since all
terms proportional to L2 vanish as well as the spin-orbit
ones. Thus we neglect the mixing of states with different
values of L. Calculating the potential, we keep only oper-
ators quadratic in the relative momentum acting on VCoul,
V V,Sconf and replace p

2→ E21,2−m
2
1,2 in higher order opera-

tors in accord with (11) preserving the symmetry under the
(1↔ 2) exchange.
The substitution (11) works well for the confining part

of the potential. However, it leads to a fictitious singular-
ity δ3(r) at the origin arising from the one-gluon exchange
part (∆VCoul(r)), which is absent in the initial potential.
Note that this singularity is not important if it is treated
perturbatively. Since we are not using the expansion in
v/c and are solving the quasipotential equation with the
complete relativistic potential, an additional analysis is
required. Such singular contributions emerge from the fol-
lowing terms:

k2

[εi(q)(εi(q)+mi)εi(p)(εi(p)+mi)]1/2
VCoul(k

2) ,

k2

[ε1(q)ε1(p)ε2(q)ε2(p)]1/2
VCoul(k

2) , (12)

if we simply apply the replacement (11). However, the
Fourier transforms of expressions (12) are less singular at
r→ 0. To avoid such fictitious singularities we note that if
the binding effects are taken into account, it is necessary
to replace ε1,2→ E1,2−η1,2V , where V is the quark inter-
action potential and η1,2 =m2,1/(m1+m2). At small dis-
tances r→ 0, the Coulomb singularity in V dominates and
makes possible the correct asymptotic behavior. Therefore,
we replace ε1,2→E1,2−η1,2VCoul in the Fourier transforms
of terms (12) [18].We used the similar regularization of sin-
gularities in the analysis of heavy–light meson spectra [12].
Finally, we ignore the annihilation terms in the quark po-
tential since they contribute only in the isoscalar channels
and are suppressed in the ss̄ vector channel [2].
The resulting qq̄ potential then reads

V (r) = VSI(r)+VSD(r) , (13)

where the spin-independent potential for S-states (L2 = 0)
has the form

VSI(r) =VCoul(r)+Vconf(r)+

(
E21 −m

2
1+E

2
2 −m

2
2

)2
4(E1+m1)(E2+m2)

×

{
1

E1E2
VCoul(r)

+
1

m1m2

(
1+(1+κ)

[
(1+κ)

(E1+m1)(E2+m2)

E1E2

−

(
E1+m1
E1

+
E1+m2
E2

)])
V Vconf(r)

+
1

m1m2
V Sconf(r)

}



748 D. Ebert et al.: Masses and electroweak properties of light mesons in the relativistic quark model

+
1

4

(
1

E1(E1+m1)
∆Ṽ

(1)
Coul(r)

+
1

E2(E2+m2)
∆Ṽ

(2)
Coul(r)

)

−
1

4

[
1

m1(E1+m1)
+

1

m2(E2+m2)

− (1+κ)

(
1

E1m1
+

1

E2m2

)]
∆V Vconf(r)

+

(
E21 −m

2
1+E

2
2 −m

2
2

)
8m1m2(E1+m1)(E2+m2)

∆V Sconf(r) , (14)

and the spin-dependent potential is given by

VSD(r) =
2

3E1E2

[
∆V̄Coul(r)

+

(
E1−m1
2m1

− (1+κ)
E1+m1
2m1

)

×

(
E2−m2
2m2

− (1+κ)
E2+m2
2m2

)
∆V Vconf(r)

]
S1S2 ,

(15)

with

VCoul(r) =−
4

3

αs

r
,

Ṽ
(i)
Coul(r) = VCoul(r)

1(
1+ηi

4

3

αs

Ei

1

r

)(
1+ηi

4

3

αs

Ei+mi

1

r

)

(i= 1, 2) ,

V̄Coul(r) = VCoul(r)
1(

1+η1
4

3

αs

E1

1

r

)(
1+η2

4

3

αs

E2

1

r

) ,

η1,2 =
m2,1

m1+m2
. (16)

Here we put αs ≡ αs(µ212) with µ12 = 2m1m2/(m1+m2).
We adopt for αs(µ

2) the simplest model with freezing [19],
namely

αs(µ
2) =

4π

β0 ln
µ2+M2B
Λ2

, β0 = 11−
2

3
nf , (17)

wherethebackgroundmass isMB=2.24
√
A=0.95GeV[19],

and Λ = 413MeV was fixed from fitting the ρ mass.4

We put the number of flavors nf = 2 for π, ρ, K, K
∗

and nf = 3 for φ. As a result we obtain αs(µ
2
ud) = 0.730,

αs(µ
2
us) = 0.711 and αs(µ

2
ss) = 0.731.

The quasipotential equation (1) is solved numerically
for the complete relativistic potential (13) which depends
on the meson mass in a complicated highly nonlinear way.

4 The definition (17) of αs can be smoothly matched with the
αs used for heavy quarkonia [11] at the scale about mc.

Table 1.Masses of light S-wave mesons (in MeV)

Meson State Theory Experiment

n2S+1LJ this work [2] [3] [4] PDG [20]

π 11S0 154 150 138 140 139.57

ρ 13S1 776† 770 742 785 775.8(5)

π′ 21S0 1292 1300 1331 1300(100)

ρ′ 23S1 1486 1450 1420 1465(25)

π′′ 31S0 1788 1880 1826 1812(14)

ρ′′ 33S1 1921 2000 1472

K 11S0 482 470 497 506 493.677(16)

K∗ 13S1 897 900 936 890 891.66(26)

K′ 21S0 1538 1450 1470

K∗
′

23S1 1675 1580 1550 1717(27)

K′′ 31S0 2065 2020 1965

K∗
′′

33S1 2156 2110 1588

φ 13S1 1038 1020 1072 990 1019.46(2)

φ′ 23S1 1698 1690 1472 1680(20)

† fitted value

The obtained meson masses are presented in Table 1 in
comparison with experimental data [20] and other theor-
etical results [2–4]. This comparison exhibits a reasonably
good overall agreement of our predictions with experi-
mental mass values. Our results are also consistent with
mass formulas derived using the finite-energy sum rules
in QCD [8] and with predictions of lattice QCD [10]. We
consider such agreement to be quite successful, since in
evaluating the meson masses we had at our disposal only
one adjustable parameter Λ, which was fixed from fitting
the ρ meson mass. All other parameters are kept the same
as in our previous papers [11, 12]. The obtained wave func-
tions of the light mesons are used for the calculation of
their decay constants and electromagnetic form factors in
the following sections.

4 Decay constants

The decay constants fP and fV of the pseudoscalar (P )
and vector (V ) mesons parameterize the matrix elements
of the weak current JWµ = q̄1J

W
µ q2 = q̄1γµ(1− γ5)q2 be-

tween the corresponding meson and the vacuum. They are
defined by

〈0|q̄1γ
µγ5q2|P (K)〉= ifPK

µ , (18)

〈0|q̄1γ
µq2|V (K, ε)〉= fVMV ε

µ , (19)

where K is the meson momentum, εµ and MV are the
polarization vector and mass of the vector meson. This
matrix element can be expressed through the two-particle
Bethe–Salpeter wave function in the quark loop integral
(see Fig. 1):

〈
0|JWµ |M(K)

〉
=

∫
d4p

(2π)4
Tr {γµ(1−γ5)Ψ(M,p)} , (20)
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Fig. 1.Weak annihilation diagram of the light meson. Solid and bold lines denote the positive- and negative-energy part of the
quark propagator, respectively. Dashed lines represent the interaction operator V

where the trace is taken over spin indices. Integration over
p0 in (20) allows one to pass to the single-time wave func-
tion in the meson rest frame:

Ψ(M,p) =

∫
dp0

2π
Ψ(M,p). (21)

This wave function contains both positive- and negative-
energy quark states. Since in the quasipotential approach
we use the single-time wave function ΨMK(p) projected
onto the positive-energy states it is necessary to include
additional terms which account for the contributions of
negative-energy intermediate states. The weak annihila-
tion amplitude (20) is schematically presented in the left
hand side of Fig. 1. The first diagram on the right hand
side corresponds to the simple replacing of the single-
time wave function (21) Ψ(M,p) by the quasipotential
one ΨMK(p).

5 The second and third diagrams account
for negative-energy contributions to the first and second
quark propagators, respectively. The last diagram corres-
ponds to negative-energy contributions from both quark
propagators.
Thus in the quasipotential approach this decay ampli-

tude has the form

〈
0|JWµ |M(K)

〉

=
√
2M

{∫
d3p

(2π)3
ū1(p1)J

W
µ u2(p2)ΨMK(p)

+

[∫
d3pd3p′

(2π)6
ū1(p1)Γ1

Λ
(−)
1 (p

′
1)γ

0JWµ Λ
(+)
2 (p

′
2)γ

0

M + ε1(p′)− ε2(p′)

×Γ2u2(p2)Ṽ (p−p
′)ΨMK(p)+ (1↔ 2)

]

+

∫
d3pd3p′

(2π)6
ū1(p1)Γ1

Λ
(−)
1 (p

′
1)γ

0JWµ Λ
(−)
2 (p

′
2)γ

0

M + ε1(p′)+ ε2(p′)

×Γ2u2(p2)Ṽ (p−p
′)ΨMK(p)

}
, (22)

where p
(′)
1,2 =K/2±p

(′); matrices Γ1,2 denote the Dirac
structure of the interaction potential (5) for the first
and second quark, respectively, and thus Γ1Γ2Ṽ (p−p′) =

5 The contributions with the exchange by the effective in-
teraction potential V which contain only positive-energy inter-
mediate states are automatically accounted for by the wave
function itself.

V(p−p′). The factor
√
2M follows from the normaliza-

tion of the quasipotential wave function. The positive- and
negative-energy projectors have the standard definition:

Λ(±)(p) =
ε(p)±

(
mγ0+γ0(∆p)

)
2ε(p)

.

The quasipotential wave function in the rest frame of
the decaying meson ΨM (p) ≡ ΨM 0(p) can be expressed
through a product of radial ΦM (p), spin χss′ and color
φq1q2 wave functions

ΨM(p) = ΦM (p)χss′φq1q2 . (23)

Now the decay constants can be presented in the following
form

fP,V = f
(1)
P,V +f

(2+3)
P,V +f

(4)
P,V , (24)

where the terms on the right hand side originate from
the corresponding diagrams in Fig. 1 and parameter-
ize respective terms in (22). In the literature [2, 21–
23] usually only the first term is taken into account,
since it provides the nonrelativistic limit, while other
terms give only relativistic corrections and thus van-
ish in this limit. Such an approximation can be justi-
fied for mesons containing heavy quarks. However, as
it will be shown below, for light mesons other terms
become equally important, and their account is crucial
for getting the results in agreement with experimental
data.
The matrix element (22) and thus the decay constants

can be calculated in an arbitrary frame and from any com-
ponent of the weak current. Such calculation can be most
easily performed in the rest frame of the decaying me-
son from the zero component of the current. The same
results will be obtained from the vector component, how-
ever, this calculation is more cumbersome since here the
rest frame cannot be used and, thus, it is important to take
into account the relativistic transformation of the meson
wave function from the rest frame to the moving one with
the momentum K (see (34) below). It is also possible to
perform calculations in the explicitly covariant way using
methods proposed in [24].
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The resulting expressions for decay constants are given
by

f
(1)
P,V =

√
12

M

∫
d3p

(2π)3

(
ε1(p)+m1
2ε1(p)

)1/2(
ε2(p)+m2
2ε2(p)

)1/2

×

{
1+λP,V

p2

[ε1(p)+m1][ε2(p)+m2]

}
ΦP,V (p) ,

(25)

f
(2+3)
P,V =

√
12

M

∫
d3p

(2π)3

(
ε1(p)+m1
2ε1(p)

)1/2(
ε2(p)+m2
2ε2(p)

)1/2

×

[
M − ε1(p)− ε2(p)

M + ε1(p)− ε2(p)
×

p2

ε1(p)[ε1(p)+m1]

×

{
1+λP,V

ε1(p)+m1
ε2(p)+m2

}
+(1↔ 2)

]
ΦP,V (p) ,

(26)

f
(4)
P,V =

√
12

M

∫
d3p

(2π)3

(
ε1(p)+m1
2ε1(p)

)1/2(
ε2(p)+m2
2ε2(p)

)1/2

×
M − ε1(p)− ε2(p)

M + ε1(p)+ ε2(p)

×

{
−λP,V −

p2

[ε1(p)+m1][ε2(p)+m2]

}

×

[
(1− ε)m21m

2
2

ε21(p)ε
2
2(p)

+
p2

[ε1(p)+m1][ε2(p)+m2]

]

×ΦP,V (p) , (27)

with λP =−1 and λV = 1/3. Here ε is the mixing coeffi-
cient of scalar and vector confining potentials (9) and the
long-range anomalous chromomagnetic quark moment κ
(8) is put equal to −1. Note that f (2+3)P vanishes for pseu-
doscalar mesons with equal quark masses, such as the pion.
The positive-energy contribution (25) reproduces the pre-
viously known expressions for the decay constants [2, 21].
The negative-energy contributions (26) and (27) are new
and play a significant role for light mesons (see below).
In the nonrelativistic limit p2/m2→ 0 the expression

(25) for decay constants gives the well-known formula

fNRP,V =

√
12

MP,V
|ΨP,V (0)| , (28)

where ΨP,V (0) is the meson wave function at the origin
r = 0. All other contributions vanish in the nonrelativistic
limit.
In Table 2 we present our predictions for the light me-

son decay constants calculated using the meson wave func-
tions which were obtained as the numerical solutions of
the quasipotential equation in Sect. 3. The nonrelativistic
values fNRM , (28), as well as the values of different con-

tributions in Fig. 1, f
(1,2,3,4)
M , see (25)–(27), and the full

relativistic results fM , (24), are given. In Table 3 we com-
pare our results for the decay constants fM with predic-
tions of other approaches [2–4, 7, 25], recent values from
two- [10] and three-flavor lattice QCD [26] and available
experimental data [20]. It is clearly seen that the nonrela-

Table 2. Different contributions to the pseudoscalar and vec-
tor decay constants of light mesons (in MeV). The notations are
taken according to (24) and (28)

Constant fNRM f
(1)
M f

(2+3)
M +f

(4)
M (f

(2+3)
M +f

(4)
M )/f

(1)
M fM

fπ 1290 515 −391 −76% 124
fK 783 353 −198 −56% 155
fρ 490 402 −183 −46% 219
fK∗ 508 410 −174 −42% 236
fφ 511 415 −170 −41% 245

tivistic predictions are significantly overestimating all de-
cay constants, especially for the pion (almost by a factor
of 10). The account of the part of relativistic corrections

by keeping in (24) only the first term f
(1)
M (25), which

is usually used for semirelativistic calculations, does not
dramatically improve the situation. The disagreement is
still large. This is connected with the anomalously small
masses of light pseudoscalar mesons exhibiting their chi-
ral nature. In the semirelativistic quark model [2, 21] the
pseudoscalar meson mass is replaced by the so-called mock
mass M̃P , which is equal to the mean total energy of
free quarks in a meson, and with our wave functions:
M̃π = 2〈εq(p)〉 ≈ 1070MeV (∼ 8Mπ) and M̃K = 〈εq(p)〉+
〈εs(p)〉 ≈ 1232MeV (∼ 2.5MK). Such a replacement gives
f
(1)
P values which are still ≈ 1.4 times larger than the ex-
perimental ones [2]. As we see from Table 2, in the quasipo-
tential approach it is not justified to neglect contributions
of the negative-energy intermediate states for light me-
son decay constants. Indeed, the values of f

(2+3)
M +f

(4)
M are

large and negative (reaching −76% of f
(1)
π for the pion)

thus compensating the overestimation of decay constants
by the positive-energy contribution f

(1)
M . This is the con-

sequence of the smallness of the light pseudoscalar meson
masses compared to the energies of their constituents. The
negative-energy contributions (26) and (27) are propor-
tional to the ratio of the meson binding energyM− ε1(p)−
ε2(p) to its mass. For mesons with heavy quarks this factor
leads to the suppression of negative-energy contributions
since the binding energies are small on the heavy meson
mass scale. This results in the dominance of the positive-
energy term f

(1)
M since the negative-energy terms give only

1/mQ contributions (mQ is the heavy quark mass).
6 On

the other hand, for light mesons, especially for the pion
and kaon, the binding energies are large on the light meson
mass scale and, thus, such factor gives no suppression. Tak-
ing the complete relativistic expression for decay constants
fM (24) brings theoretical predictions in good agreement
with available experimental data.
The comparison of our values of the decay constants

with other predictions in Table 3 indicate that they are

6 For the heavy–heavy Bc meson (cb̄) these negative-energy
corrections will be of order v4/c4 and thus very small. The

influence of the negative-energy contributions f
(2+3,4)
M on the

decay constants of heavy–light B and D mesons will be consid-
ered elsewhere.
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Table 3. Pseudoscalar and vector decay constants of light mesons (in MeV)

Constant This work [2] [3, 25] [4] [7] Lattice [10] Lattice [26] Experiment [20]

fπ 124 180 131 219 138 126.6±6.4 129.5±3.6 130.7±0.1±0.36
fK 155 232 155 238 160 152.0±6.1 156.6±3.7 159.8±1.4±0.44
fρ 219 220 207 238 239.4±7.3 220±2∗

fK∗ 236 267 241 241 255.5±6.5 230±8†

fφ 245 336 259 270.8±6.5 229±3‡

∗ derived from the experimental value for Γρ0→e+e− ,
† derived from the experimental value for the ratio Γτ→K∗ντ /Γτ→ρντ and the fρ value,
‡ derived from the experimental value for Γφ→e+e−

competitive even with the results of more sophisticated ap-
proaches [4, 25] which are based on the Dyson–Schwinger
and Bethe–Salpeter equations. On the other hand our
model is more selfconsistent than some other approaches [2,
6, 7, 21, 22].We calculate the meson wave functions by solv-
ing the quasipotential equation in contrast to the models
based on the relativistic Hamilton dynamics [6, 7] where
various ad hoc wave function parameterizations are em-
ployed. We also do not need to introduce the mock meson
mass [2, 21, 22] and to substitute it for the lightmesonmass
as it was discussed above.

5 Electromagnetic form factors

The elastic matrix element of the electromagnetic current
Jµ between the initial and final pseudoscalar meson states
is parameterized by the form factor FP (Q

2)

〈M(PF)|Jµ|M(PI)〉= FP (Q
2)(PI+PF)µ , (29)

where Q2 =−(PF−PI)2.
In the quasipotential approach such a matrix element

has the form [27]

〈M(PF)|Jµ|M(PI)〉

=

∫
d3p d3q

(2π)6
Ψ̄M PF(p)Γµ(p,q)ΨM PI(q) , (30)

where Γµ(p,q) is the two-particle vertex function and ΨM
are the meson wave functions projected onto the positive-
energy states of quarks and boosted to the moving ref-
erence frame. The contributions to Γ come from Figs. 2

Fig. 3. Vertex function Γ (2) corres-
ponding to (33). Dashed lines represent
the interaction operator V. Bold lines
denote the negative-energy part of the
quark propagator. As on Fig. 1, photon
interaction with one quark is shown

Fig. 2. Lowest order
vertex function Γ (1) cor-
responding to (32). Pho-
ton interaction with one
quark is shown

and 3. The term Γ (2) includes contributions from the
negative-energy quark states. Note that the form of the rel-
ativistic corrections resulting from the vertex function Γ (2)

explicitly depends on the Lorentz structure of the qq̄-inter-
action. Thus the vertex function is given by

Γµ(p,q) = Γ
(1)
µ (p,q)+Γ

(2)
µ (p,q)+ · · · , (31)

where

Γ (1)µ (p,q) = e1ū1(p1)γµu1(q1)(2π)
3δ(p2−q2)+ (1↔ 2) ,

(32)

and

Γ (2)µ (p,q) = e1ū1(p1)ū2(p2)

×

{
V(p2−q2)

Λ
(−)
1 (k

′
1)

ε1(k′1)+ ε1(q1)
γ01γ1µ

+γ1µ
Λ
(−)
1 (k1)

ε1(k1)+ ε1(p1)
γ01V(p2−q2)

}

×u1(q1)u2(q2)+ (1↔ 2) . (33)
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Here e1,2 are the quark charges, k1 = p1−∆;k′1 = q1+∆;
∆=PF−PI;

Λ(−)(p) =
ε(p)−

(
mγ0+γ0(∆p)

)
2ε(p)

, ε(p) =
√
p2+m2 ,

and

p1,2 = ε1,2(p)
PF

M
±

3∑
i=1

n(i)(PF)p
i ,

q1,2 = ε1,2(q)
PI

M
±

3∑
i=1

n(i)(PI)q
i ,

where n(i) are three four-vectors given by

n(i)µ(p) =

{
pi

M
, δij+

pipj

M(E+M)

}
,

E =
√
p2+M2, i, j = 1, 2, 3 ;

PI = (EI,PI) and PF = (EF,PF) are four-momenta of the
initial and final mesons.
It is important to note that the wave functions enter-

ing the current matrix element (30) cannot be both in the
rest frame. In the initial meson rest frame, the final me-
son is moving with the recoil momentum ∆. The wave
function of the moving meson ΨM∆ is connected with
the wave function in the rest frame ΨM 0 ≡ ΨM by the
transformation [27]

ΨM∆(p) =D
1/2
1 (R

W
L∆
)D
1/2
2 (R

W
L∆
)ΨM 0(p) , (34)

where RW is the Wigner rotation, L∆ is the Lorentz boost
from the rest frame to a moving one, and the rotation ma-
trix D1/2(R) in the spinor representation is given by

(
1 0
0 1

)
D
1/2
1,2 (R

W
L∆
) = S−1(p1,2)S(∆)S(p), (35)

where

S(p) =

√
ε(p)+m

2m

(
1+

αp

ε(p)+m

)

is the usual Lorentz transformation matrix of the Dirac
spinor.
To calculate the matrix element (29) of the electromag-

netic current between the pseudoscalar meson states we
substitute the vertex functions Γ (1) (32) and Γ (2) (33) in
(30) and take into account the wave function transform-
ation (34). Then we use the δ function in Γ (1) to perform
one of the integrations in the matrix element (30). For
the contribution of Γ (2) we use instead the quasipotential
equation to replace the integral of the product of the inter-
action potential and the bound state wave function by the
product of the corresponding binding energy and the wave
function. To simplify the calculation we explicitly use the
value κ = −1 for the long-range anomalous chromomag-
netic quark moment (8). However, as previously we keep
the dependence on the mixing parameter ε of the vector

and scalar confining potentials (9). As a result we get the
following expression for the electromagnetic form factor of
the pseudoscalar meson:

FP (Q
2) = F

(1)
P (Q

2)+ εF
(2)S
P (Q2)+ (1− ε)F (2)VP (Q2) ,

(36)

F
(1)
P (Q

2) =
2
√
EM

E+M

{
e1

∫
d3p

(2π)3
Ψ̄M

(
p+
2ε2(p)

E+M
∆

)

×

√
ε1(p)+m1
ε1(p+∆)+m1

[
ε1(p+∆)+ ε1(p)

2
√
ε1(p+∆)ε1(p)

+
p∆

2
√
ε1(p+∆)ε1(p)(ε1(p)+m1)

−
ε1(p+∆)− ε1(p)

2
√
ε1(p+∆)ε1(p)

p2T
ε1(p)+m1

×

(
1

ε1(p)+m1
+

1

ε2(p)+m2

)]
ΨM(p)+ (1↔ 2)

}
,

(37)

F
(2)S
P (Q2) =

2
√
EM

E+M

{
e1

∫
d3p

(2π)3
Ψ̄M

(
p+
2ε2(p)

E+M
∆

)

×

√
ε1(p)+m1
ε1(p+∆)+m1

ε1(p+∆)+m1
2ε1(p+∆)

×

[
ε1(p+∆)− ε1(p)+2m1

2
√
ε1(p+∆)ε1(p)

−
p∆

2
√
ε1(p+∆)ε1(p)(ε1(p)+m1)

−
ε1(p+∆)+m1

2
√
ε1(p+∆)ε1(p)

p2T
ε1(p)+m1

×

(
1

ε1(p)+m1
+

1

ε2(p)+m2

)]

×
ε1(p+∆)− ε1(p)

ε1(p+∆) [ε1(p+∆)+ ε1(p)]

× [M − ε1(p)− ε2(p)]ΨM (p)+ (1↔ 2)

}
,

(38)

F
(2)V
P (Q2) =

2
√
EM

E+M

{
e1

∫
d3p

(2π)3
Ψ̄M

(
p+
2ε2(p)

E+M
∆

)

×

√
ε1(p)+m1
ε1(p+∆)+m1

ε1(p+∆)+m1
2ε1(p+∆)

×

[
ε1(p)−m1

2
√
ε1(p+∆)ε1(p)

+
p∆

2
√
ε1(p+∆)ε1(p)(ε1(p)+m1)

+
ε1(p+∆)+m1

2
√
ε1(p+∆)ε1(p)

p2T
ε1(p)+m1
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×

(
1

ε1(p)+m1
+

1

ε2(p)+m2

)]

×
ε1(p+∆)− ε1(p)

ε1(p+∆)[ε1(p+∆)+ ε1(p)]

× [M − ε1(p)− ε2(p)]ΨM (p)+ (1↔ 2)

}
,

(39)

whereF
(2)S(V )
P arecontributionsfromscalar(vector)confin-

ing potentials and pT = p
2− (p∆)2/∆2, E =

√
M2+∆2.

As previously, we put ε = −1 for further numerical cal-
culations. It is important to note that the above expres-
sions for the electromagnetic form factor of the positively-
charged pseudoscalar meson exactly satisfy the normaliza-
tion condition

FP (0) = 1 (40)

following from the electric charge conservation.
Now we can use the wave functions of the pseudoscalar

light mesons (π,K), found in Sect. 3, for the numerical cal-
culation of their electromagnetic form factors FP (Q

2) in

Fig. 4. The charged pion form factor squared in compari-
son with experimental data from [28] (open circles), [29] (solid
squares) and [30] (crosses)

the space-like region Q2 ≥ 0. The results of such calcula-
tions for the charged pion are shown in Figs. 4 (F 2π (Q

2))
and 5 (Q2Fπ(Q

2)) in comparison with experimental data
from [28–30]. Good agreement with data both in low and
high Q2 regions is found, including recent JLab data [30],
which are plotted with crosses. It is clearly seen from Fig. 5
that the calculated pion form factor at high Q2 exhibits
the asymptotic behavior Fπ(Q

2) ∼ αs(Q2)/Q2 predicted
by the quark counting rule [31] and perturbative QCD [32].
Our results for the pion form factor can also be compared
with QCD based calculations [33] and with recent param-
eterizations [34, 35] which arise from the constraints of an-
alyticity and unitarity. The latter form factor models are
based on the vector meson dominance and include a pat-
tern of radial excitations expected from dual resonance
models [35]. The consistency of our results with such pa-
rameterizations (cf. Fig. 4 with Fig. 2 of [35]) just means
the manifestation of the quark–hadron duality. Finally, our

Fig. 5. Q2 times charged pion form factor in comparison with
experimental data from [28] (open circles), [29] (solid squares)
and [30] (crosses)

Fig. 6. The charged kaon form factor squared in comparison
with experimental data from [38] (open circles) and [39] (solid
squares)



754 D. Ebert et al.: Masses and electroweak properties of light mesons in the relativistic quark model

Table 4. Charge radii of light pseudoscalar mesons

Charge radii This work [2] [25] [7] Lattice [37] Experiment [20]
√
〈r2〉π (fm) 0.66 0.66 0.67 0.63 0.63±0.1 0.672±0.08√
〈r2〉K± (fm) 0.57 0.59 0.62 0.60 0.560±0.031

〈r2〉K0 (fm
2) −0.072 −0.09 −0.086 −0.062 −0.076±0.018

Fig. 7.Q2 times the charged kaon (solid line) and neutral kaon
(dashed line) form factors

predictions agree fairly well with recent lattice computa-
tions of the pion form factor [36, 37]. The corresponding
plots for the charged kaon form factor are given in Figs. 6
and 7 in comparison with experimental data from [38, 39],
which are available only for the low Q2 region. Again good
agreement with experimental data is found. On Fig. 7 we
also plot the neutral kaon form factor by the dashed line.
The mean-squared charge radius of the pseudoscalar

meson (P = π,K) is defined by

〈r2〉P =−6

[
dFP (Q

2)

dQ2

]
Q2=0

. (41)

The calculated values of the charge radii of light pseu-
doscalar mesons are given in Table 4 in comparison with
predictions of other approaches [2, 7, 25, 37] and experi-
mental data [20]. An overall good agreement with experi-
mental data is found.

6 Conclusions

The relativistic quark model, which has been previously
developed and successfully used for the comprehensive in-
vestigation of different properties of heavy and heavy–
light hadrons, was applied here for calculating the masses,
weak decay constants and electromagnetic form factors of
the light mesons. The main assumptions and parameters
of the model (such as the Lorentz structure and param-
eters of the confining potential and quark masses) were
kept the same as in previous studies. The only change we

made is the necessary modification of the running coup-
ling constant αs(µ

2) in the infrared region. Following [19]
we chose the simplest model with freezing (17). Therefore
only one additional parameter Λ was introduced and it
was fixed from fitting the ρ meson mass. We constructed
the local relativistic quasipotential for the light quarks
using the replacement (11), which was previously tested on
the heavy–lightmesons. The resulting relativistic potential
(13) depends on the meson mass in a complicated nonlin-
ear way. Solving numerically the quasipotential equation
(1) we got masses of the ground-state and radially-excited
light mesons in a reasonably good overall agreement with
experimental data. Even the masses of the pseudoscalar
π and K mesons are well reproduced. This is a nontriv-
ial result, since we use the constituent quark masses in
our description and thus the chiral symmetry is explicitly
broken from the very beginning. We determined the light
meson wave functions and used them for studying their
electroweak properties.
First the weak decay constants of pseudoscalar and

vector mesons were investigated. It was argued that both
positive- and negative-energy parts of the quark propa-
gators in the weak annihilation loop should be taken into
account. Usually in the semirelativistic quark model [2,
21, 22] only the positive-energy contributions are kept.
This approximation requires to replace in the expres-
sion for the pseudoscalar decay constant (25) the meson
mass by the so-called mock meson mass, which is con-
siderably larger, in order not to get the significant over-
estimate of the decay constants. We showed that the
negative-energy contributions to the light meson pseu-
doscalar decay constants are large and negative. Their
account brings theoretical predictions (with the physical
meson masses) in good agreement with available experi-
mental data.
Next we studied the electromagnetic form factor of the

pseudoscalar mesons. The corresponding matrix element
of the electromagnetic current was calculated using the
quasipotential approach. The additional contributions of
the intermediate negative-energy states (33) were taken
into account as well as the transformation of the meson
wave function from the rest frame to a moving one (34). As
a result the relativistic expression for the electromagnetic
form factor was obtained. We then calculated the pion,
charged and neutral kaon form factors in the space-like
region. Good agreement with available experimental data
both in small and largeQ2 regions were found. At largemo-
mentum transfer this form factor tends to reproduce the
power-law behavior predicted by perturtbative QCD [32].
The calculated charge radii of light pseudoscalar mesons
are in good agreement with experiment.
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In conclusion, we found that the obtained results
are quite competitive with the predictions of other ap-
proaches [2–4, 6, 7, 10, 25, 26, 36, 37] including more sophis-
ticated ones, which were specially developed for treating
light mesons.
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